GEOMETRY OF LINKAGE OF SiO ₄ TETRAHEDRA	Si:0 Ratio	EXAMPLE MINERAL	CHEMICAL COMPOSITION
Isolated tetrahedra: No sharing of oxygens between tetrahedra; individual tetrahedra linked to each other by bonding to cation between them	1:4	Olivine	Magnesium-iron silicate
Single chains: Each tetrahedron linked to two others by shared oxygens; chains bonded by cations	1:3	Pyroxene	Magnesium-iron silicate
Double chains: Two parallel chains joined by shared oxygens between every other pair of tetrahedra; the other pairs of tetrahedra bond to cations that lie between the chains	4:11	Amphibole	Calcium-magnesium iron silicate
Sheets: Each tetrahedron linked to three others by shared oxygens; sheets bonded by cations	2:5	Mica (muscovite)	Aluminum silicate Potassium- aluminum silicate
Frameworks: Each tetrahedron shares all its oxygens with other SiO ₄ tetrahedra (in quartz) or AlO ₄ tetrahedra	1:2	Feldspar (orthoclase) Quartz	Potassium- aluminum silicate Silicon dioxide