| GEOMETRY OF LINKAGE
OF SiO ₄ TETRAHEDRA | Si:0
Ratio | EXAMPLE
MINERAL | CHEMICAL
COMPOSITION | |---|---------------|------------------------------------|--| | Isolated tetrahedra: No sharing of oxygens
between tetrahedra; individual
tetrahedra linked to each other by
bonding to cation between them | 1:4 | Olivine | Magnesium-iron
silicate | | Single chains: Each tetrahedron linked to
two others by shared oxygens; chains
bonded by cations | 1:3 | Pyroxene | Magnesium-iron
silicate | | Double chains: Two parallel chains joined
by shared oxygens between every other
pair of tetrahedra; the other pairs of
tetrahedra bond to cations that lie
between the chains | 4:11 | Amphibole | Calcium-magnesium
iron silicate | | Sheets: Each tetrahedron linked to three
others by shared oxygens; sheets
bonded by cations | 2:5 | Mica (muscovite) | Aluminum silicate Potassium- aluminum silicate | | Frameworks: Each tetrahedron shares all its oxygens with other SiO ₄ tetrahedra (in quartz) or AlO ₄ tetrahedra | 1:2 | Feldspar
(orthoclase)
Quartz | Potassium-
aluminum silicate
Silicon dioxide |